Análise do desempenho térmico e hidráulico de revestimento de concreto permeável em condições de colmatação

Autores

DOI:

https://doi.org/10.58922/transportes.v33.e3119

Palavras-chave:

Mitigação de ilhas de calor urbanas. Pavimentos permeáveis. Desempenho térmico. Colmatação de poros. Desempenho hidráulico.

Resumo

O crescimento urbano acelerado resulta na impermeabilização do solo, intensificando problemas como inundações e formação de Ilhas de Calor Urbanas (ICUs). O Pavimento de Concreto Permeável (PCP) é uma estratégia utilizada para mitigar esses problemas, com capacidade de regular o escoamento pluvial e sua condutividade térmica reduzida. No entanto, o entupimento, causado pela infiltração de sedimentos, obstrui os poros do PCP, comprometendo seu desempenho hidráulico e térmico. Este estudo investiga os efeitos do entupimento no PCP, com foco no comportamento térmico e na condutividade do mesmo. Inicialmente, temperatura e umidade do ar foram avaliadas para compreender a influência nas temperaturas superficiais do PCP desobstruído. Ao comparar o PCP desobstruído e o obstruído, o PCP desobstruído apresentou temperaturas superficiais em média 1,25 °C mais altas do que os obstruídos sob exposição solar. A análise da condutividade térmica revelou o impacto do entupimento com areia, que possui condutividade 85,7% maior que o ar. Os resultados indicam que, embora o entupimento prejudique o desempenho hidráulico, ele melhora o desempenho térmico. Essas descobertas sugerem que o equilíbrio entre os comportamentos hidráulico e térmico deve ser avaliado ao gerenciar estruturas de desenvolvimento de baixo impacto.

Downloads

Não há dados estatísticos.

Referências

ASTM (2021a) D6913/D6913M-17: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. West Conshohocken, PA: ASTM International.

ASTM (2021b) D7263-21: Standard Test Methods for Laboratory Determination of Density (Unit Weight) of Soil Specimen. West Conshohocken, PA: ASTM International.

ASTM (2021c) C642-21: Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA: ASTM International.

ASTM (2022) C78/C78M-22: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third Point Loading). West Conshohocken, PA: ASTM International.

ASTM (2023) C1701/C1701M-17a: Standard Test Method for Infiltration Rate of In Place Pervious Concrete. West Conshohocken, PA: ASTM International.

Bin Yahaya, N. (2010) An Exploration of Co-Development Within the Malaysian Automotive Industry. Doctor thesis. Cranfield University. Bedford, UK.

Bonicelli, A. and L.R. Pianeta (2019) Performance and applications of pervious concrete pavement material as an overlay on existent concrete slabs. IOP Conference Series. Materials Science and Engineering, v. 471, p. 032061. DOI: 10.1088/1757-899X/471/3/032061. DOI: https://doi.org/10.1088/1757-899X/471/3/032061

Chen, J.; R. Chu; H. Wang et al. (2019a) Alleviating urban heat island effect using high-conductivity permeable concrete pavement. Journal of Cleaner Production, v. 237, p. 117722. DOI: 10.1016/j.jclepro.2019.117722. DOI: https://doi.org/10.1016/j.jclepro.2019.117722

Chen, J.; H. Wang; P. Xie et al. (2019b) Analysis of thermal conductivity of porous concrete using laboratory measurements and microstructure models, Construction & Building Materials, v. 218, p. 90-8. DOI: 10.1016/j.conbuildmat.2019.05.120. DOI: https://doi.org/10.1016/j.conbuildmat.2019.05.120

Cheng, Y.-Y.; S.-L. Lo; C.-C. Ho et al. (2019) Field testing of porous pavement performance on runoff and temperature control in Taipei City. Water, v. 11, n. 12, p. 2635. DOI: 10.3390/w11122635. DOI: https://doi.org/10.3390/w11122635

Ding, Z.; P. Li; X. Wu et al. (2020) Evaluation of the contact characteristics of graded aggregate using coarse aggregate composite geometric indexes. Construction & Building Materials, v. 247, p. 118608. DOI: 10.1016/j.conbuildmat.2020.118608. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118608

DNIT (2020) 432-ME: Agregados: Determinação das Propriedades de Forma por Meio do Processamento Digital de Imagens (PDI)-Método de Ensaio. Brasília: DNIT.

El-Hassan, H.; P. Kianmehr and S. Zouaoui (2019) Properties of pervious concrete incorporating recycled concrete aggregates and slag. Construction & Building Materials, v. 212, p. 164-175. DOI: 10.1016/j.conbuildmat.2019.03.325. DOI: https://doi.org/10.1016/j.conbuildmat.2019.03.325

Guan, X.; J. Wang and F. Xiao (2021) Sponge city strategy and application of pavement materials in sponge city. Journal of Cleaner Production, v. 303, p. 127022. DOI: 10.1016/j.jclepro.2021.127022. DOI: https://doi.org/10.1016/j.jclepro.2021.127022

Hendel, M.; S. Parison; A. Grados et al. (2018) Which pavement structures are best suited to limiting the UHI effect? A laboratory-scale study of Parisian pavement structures. Building and Environment, v. 144, p. 216-229. DOI: 10.1016/j.buildenv.2018.08.027. DOI: https://doi.org/10.1016/j.buildenv.2018.08.027

Isaia, G.C. (2007) Materiais de Construção Civil e Princípios de Ciências e Engenharia de Materiais. São Paulo: IBRACON.

Kia, A.; H.S. Wong and C.R. Cheeseman (2017) Clogging in permeable concrete: a review. Journal of Environmental Management, v. 193, p. 221-233. DOI: 10.1016/j.jenvman.2017.02.018. PMid:28222353. DOI: https://doi.org/10.1016/j.jenvman.2017.02.018

Kovác, M. and A. Sicáková (2017) Pervious concrete as a sustainable solution for pavements in urban areas. In Proceedings of 10th International Conference “Environmental Engineering”. Lithuania: Vilnius Tech. DOI: 10.3846/enviro.2017.031. DOI: https://doi.org/10.3846/enviro.2017.031

Lu, Y.; Y. Qin; C. Huang et al. (2023) Albedo of pervious concrete and its implications for mitigating urban heat island. Sustainability, v. 15, n. 10, p. 8222. DOI: 10.3390/su15108222. DOI: https://doi.org/10.3390/su15108222

Maroof, M.A.; A. Mahboubi and A. Noorzad (2020) A new method to determine specific surface area and shape coefficient of a cohesionless granular medium. Advanced Powder Technology, v. 31, n. 7, p. 3038-3049. DOI: 10.1016/j.apt.2020.05.028. DOI: https://doi.org/10.1016/j.apt.2020.05.028

Mata, L. A. (2008). Sedimentation of Pervious Concrete Pavement Systems. Dissertation. NC State University. Raleigh, NC.

Merten, F.R.M.; V.F.P. Dutra; H.L. Strieder et al. (2022) Clogging and maintenance evaluation of pervious concrete pavements with recycled concrete aggregate. Construction & Building Materials, v. 342, p. 127939. DOI: 10.1016/j.conbuildmat.2022.127939. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127939

Miao, Y.; X. Liu; Y. Hou et al. (2019) Packing characteristics of aggregate with consideration of particle size and morphology. Applied Sciences, v. 9, n. 5, p. 869. DOI: 10.3390/app9050869. DOI: https://doi.org/10.3390/app9050869

Mindess, S. (2019). Resistance of concrete to destructive agencies. In Hewlett, P.C. (ed.) Lea’s Chemistry of Cement and Concrete. Oxford: Butterworth-Heinemann, p. 251-283. DOI: https://doi.org/10.1016/B978-0-08-100773-0.00006-X

Moretti, L.; P. Di Mascio and C. Fusco (2019) Porous concrete for pedestrian pavements. Water, v. 11, n. 10, p. 2105. DOI: 10.3390/w11102105. DOI: https://doi.org/10.3390/w11102105

Nassiri, S. and B. Nantasai (2017) Thermal conductivity of pervious concrete for various porosities. ACI Materials Journal, v. 114, n. 2, p. 265-271. DOI: 10.14359/51689492. DOI: https://doi.org/10.14359/51689492

Neville, A.M. (1995) Properties of Concrete (Vol. 4). London: Longman.

Peixoto, N.G.M.; L.V.S. Ribas; L.M. Monteiro et al. (2023) Avaliação do comportamento térmico de materiais empregados em projeto de requalificação viária na cidade de Fortaleza. In Anais do 17º Encontro Nacional de Conforto no Ambiente Construído. Porto Alegre: ANTAC, p. 1-10. DOI: 10.46421/encac.v17i1.4001. DOI: https://doi.org/10.46421/encac.v17i1.4001

Qin, Y. and J.E. Hiller (2016) Water availability near the surface dominates the evaporation of pervious concrete. Construction & Building Materials, v. 111, p. 77-84. DOI: 10.1016/j.conbuildmat.2016.02.063. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.063

Razzaghmanesh, M. and S. Beecham (2018) A review of permeable pavement clogging investigations and recommended maintenance regimes. Water, v. 10, n. 3, p. 337. DOI: 10.3390/w10030337. DOI: https://doi.org/10.3390/w10030337

Rossetto, R.; A. Lenti; L. Ercoli et al. (2023) Infiltration performance evaluation of a 15-year-old concrete grid paver parking area (Italy). Blue-Green Systems, v. 5, n. 2, p. 294-305. DOI: 10.2166/bgs.2023.043. DOI: https://doi.org/10.2166/bgs.2023.043

Seifeddine, K.; S. Amziane and E. Toussaint (2022) Thermal behavior of pervious concrete in dry conditions. Construction & Building Materials, v. 345, p. 128300. DOI: 10.1016/j.conbuildmat.2022.128300. DOI: https://doi.org/10.1016/j.conbuildmat.2022.128300

Seifeddine, K.; S. Amziane and E. Toussaint (2023) State of the art on the hydraulic properties of pervious concrete. Road Materials and Pavement Design, v. 24, n. 11, p. 2561-2596. DOI: 10.1080/14680629.2022.2164332. DOI: https://doi.org/10.1080/14680629.2022.2164332

Spoorthy, B.M. and A.K. Chandrappa (2023) Design methodology and clogging investigation of 2-layered pervious concrete (2L-PC) for pavement applications. The International Journal of Pavement Engineering, v. 24, n. 2, p. 2111566. DOI: 10.1080/10298436.2022.2111566. DOI: https://doi.org/10.1080/10298436.2022.2111566

Tahmasebi, P. (2018) Packing of discrete and irregular particles. Computers and Geotechnics, v. 100, p. 52-61. DOI: 10.1016/j.compgeo.2018.03.011. DOI: https://doi.org/10.1016/j.compgeo.2018.03.011

Taleghani, M. (2018) Outdoor thermal comfort by different heat mitigation strategies: a review. Renewable & Sustainable Energy Reviews, v. 81, p. 2011-2018. DOI: 10.1016/j.rser.2017.06.010. DOI: https://doi.org/10.1016/j.rser.2017.06.010

Tan, K.; Y. Qin; T. Du et al. (2021) Biochar from waste biomass as hygroscopic filler for pervious concrete to improve evaporative cooling performance. Construction & Building Materials, v. 287, p. 123078. DOI: 10.1016/j.conbuildmat.2021.123078. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123078

Tong, B. (2011) Clogging Effects of Portland Cement Pervious Concrete. Doctor thesis. Iowa State University. Ames, IA.

Wang, J.; Q. Meng; K. Tan et al. (2018) Experimental investigation on the influence of evaporative cooling of permeable pavements on outdoor thermal environment. Building and Environment, v. 140, p. 184-193. DOI: 10.1016/j.buildenv.2018.05.033. DOI: https://doi.org/10.1016/j.buildenv.2018.05.033

Wang, X.; Y. Wang; X. Ge et al. (2022) The quantitative assessment of clogging and cleaning effects on the permeability of pervious concrete. Construction & Building Materials, v. 335, p. 127455. DOI: 10.1016/j.conbuildmat.2022.127455. DOI: https://doi.org/10.1016/j.conbuildmat.2022.127455

Xie, N.; M. Akin and X. Shi (2019) Permeable concrete pavements: a review of environmental benefits and durability. Journal of Cleaner Production, v. 210, p. 1605-1621. DOI: 10.1016/j.jclepro.2018.11.134. DOI: https://doi.org/10.1016/j.jclepro.2018.11.134

Xiong, B.; H. Gao; X. Lu et al. (2023) Influence of maximum paste coating thickness without void clogging on the pore characteristics and seepage flow of pervious concrete. Construction & Building Materials, v. 392, p. 131979. DOI: 10.1016/j.conbuildmat.2023.131979. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131979

Xiong, Q.; T.G. Baychev and A.P. Jivkov (2016) Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, v. 192, p. 101-117. DOI: 10.1016/j.jconhyd.2016.07.002. PMid:27442725. DOI: https://doi.org/10.1016/j.jconhyd.2016.07.002

Yang, H.; K. Yang; Y. Miao et al. (2020) Comparison of potential contribution of typical pavement materials to heat island effect. Sustainability, v. 12, n. 11, p. 4752. DOI: 10.3390/su12114752. DOI: https://doi.org/10.3390/su12114752

Yuan, J.; X. Chen; S. Liu et al. (2018) Effect of water head, gradation of clogging agent, and horizontal flow velocity on the clogging characteristics of pervious concrete. Journal of Materials in Civil Engineering, v. 30, n. 9, p. 04018215. DOI: 10.1061/(ASCE)MT.1943-5533.0002410. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002410

Zhang, R.; G. Jiang and J. Liang (2015) The albedo of pervious cement concrete linearly decreases with porosity. Advances in Materials Science and Engineering, v. 2015, p. 1-5. DOI: 10.1155/2015/746592. DOI: https://doi.org/10.1155/2015/746592

Zimmerman, R.W. (1989) Thermal conductivity of fluid-saturated rocks. Journal of Petroleum Science Engineering, v. 3, n. 3, p. 219-227. DOI: 10.1016/0920-4105(89)90019-3. DOI: https://doi.org/10.1016/0920-4105(89)90019-3

Downloads

Publicado

16-01-2026

Como Citar

de Lima, K., da Silva Ribas, L. V., Dantas Antonino, A. C. ., Bezerra Cabral, A. E. . e Teixeira Franco Castelo Branco, V. (2026) “Análise do desempenho térmico e hidráulico de revestimento de concreto permeável em condições de colmatação”, Transportes, 33, p. e3119. doi: 10.58922/transportes.v33.e3119.

Edição

Seção

Artigos