Consumo energético de veículos elétricos em entregas: efeito de parâmetros dinâmicos, perfil da via, carga e paradas
DOI:
https://doi.org/10.58922/transportes.v33.e3067Palavras-chave:
Veículos elétricos a bateria. Modelo energético. Logística urbana. Autonomia veicular.Resumo
Este artigo avalia um modelo físico para estimar o consumo de energia de Veículos Elétricos a Bateria (BEVs) em entregas urbanas, bem como propõe uma análise do impacto da velocidade, perfil da via, peso da carga e número de paradas na autonomia desses veículos. O modelo físico microscópico proposto baseia-se em equações da dinâmica veicular, considerando regeneração exponencial de bateria durante eventos de frenagem. Os parâmetros físicos e o consumo dos sistemas auxiliares do BEV foram obtidos da literatura, e um ciclo de direção padrão é proposto, com um perfil de velocidade e aceleração baseado em dados reais. Um total de 160 cenários distintos foi simulado, variando velocidade máxima, perfil da via, peso da carga e número de paradas. Os resultados demonstram que esses fatores têm efeito significativo e quantificável na autonomia dos BEVs. Inclinações podem reduzir a autonomia em até 63% em comparação a terrenos planos, enquanto maiores velocidades aumentam substancialmente o consumo de energia – a autonomia é até 88% maior a 10 km/h e 54% menor a 80 km/h, em relação à referência de 40 km/h.
Downloads
Referências
Abdelaty, H. and M. Mohamed (2021) A prediction model for battery electric bus energy consumption in transit. Energies, v. 14, n. 10, p. 2824. DOI: 10.3390/en14102824. DOI: https://doi.org/10.3390/en14102824
Alarcón, F.E.; A. Mac Cawley and E. Sauma (2023) Electric mobility toward sustainable cities and road-freight logistics: A systematic review and future research directions. Journal of Cleaner Production, v. 430, p. 138959. DOI: 10.1016/j.jclepro.2023.138959. DOI: https://doi.org/10.1016/j.jclepro.2023.138959
Anosike, A.; H. Loomes; C.K. Udokporo et al. (2023) Exploring the challenges of electric vehicle adoption in final mile parcel delivery. International Journal of Logistics, v. 26, n. 6, p. 683-707. DOI: 10.1080/13675567.2021.1978409. DOI: https://doi.org/10.1080/13675567.2021.1978409
ABVE (2025) ABVE Data de Eletromobilidade. Available at: <https://abve.org.br/abve-data/bi-geral/> (accessed 08/29/2025).
Basso, R.; B. Kulcsár; B. Egardt et al. (2019) Energy consumption estimation integrated into the electric vehicle routing problem. Transportation Research Part D, Transport and Environment, v. 69, p. 141-167. DOI: 10.1016/j.trd.2019.01.006. DOI: https://doi.org/10.1016/j.trd.2019.01.006
Basso, R.; B. Kulcsár and I. Sanchez-Diaz (2021) Electric vehicle routing problem with machine learning for energy prediction. Transportation Research Part B: Methodological, v. 145, p. 24-55. DOI: 10.1016/j.trb.2020.12.007. DOI: https://doi.org/10.1016/j.trb.2020.12.007
Castro, F.D.; L. Cutaia and M. Vaccari (2021) End-of-life automotive lithium-ion batteries (LIBs) in Brazil: Prediction of flows and revenues by 2030. Resources, Conservation and Recycling, v. 169, p. 105522. DOI: 10.1016/j.resconrec.2021.105522. DOI: https://doi.org/10.1016/j.resconrec.2021.105522
Cauwer, C.; W. Verbeke; T. Coosemans et al. (2017) A data-driven method for energy consumption prediction and energy-efficient routing of electric vehicles in real-world conditions. Energies, v. 10, n. 5, p. 608. DOI: 10.3390/en10050608. DOI: https://doi.org/10.3390/en10050608
Chen, Y.; G. Wu; R. Sun et al. (2021) A review and outlook of energy consumption estimation models for electric vehicles. International Journal of Sustainable Transportation Energy Environment Policy, v. 2, n. 1, p. 79-96. DOI: 10.4271/13-02-01-0005. DOI: https://doi.org/10.4271/13-02-01-0005
Cieslik, W. and W. Antczak (2023) Research of load impact on energy consumption in an electric delivery vehicle based on real driving conditions: guidance for electrification of light-duty vehicle fleet. Energies, v. 16, n. 2, p. 775. DOI: 10.3390/en16020775. DOI: https://doi.org/10.3390/en16020775
Dabčević, Z.; B. Škugor; I. Cvok et al. (2024) A trip-based data-driven model for predicting battery energy consumption of electric city buses. Energies, v. 17, n. 4, p. 911. DOI: 10.3390/en17040911. DOI: https://doi.org/10.3390/en17040911
Ding, N.; J. Yang; Z. Han et al. (2022) Electric-vehicle routing planning based on the law of electric energy consumption. Mathematics, v. 10, n. 17, p. 3099. DOI: 10.3390/math10173099. DOI: https://doi.org/10.3390/math10173099
Donkers, A.; D. Yang and M. Viktorović (2020) Influence of driving style, infrastructure, weather and traffic on electric vehicle performance. Transportation Research Part D, Transport and Environment, v. 88, p. 102569. DOI: 10.1016/j.trd.2020.102569. DOI: https://doi.org/10.1016/j.trd.2020.102569
Fetene, G.M.; S. Kaplan; S.L. Mabit et al. (2017) Harnessing big data for estimating the energy consumption and driving range of electric vehicles. Transportation Research Part D, Transport and Environment, v. 54, p. 1-11. DOI: 10.1016/j.trd.2017.04.013. DOI: https://doi.org/10.1016/j.trd.2017.04.013
Fiori, C. and V. Marzano (2018) Modelling energy consumption of electric freight vehicles in urban pickup/delivery operations: analysis and estimation on a real-world dataset. Transportation Research Part D, Transport and Environment, v. 65, p. 658-673. DOI: 10.1016/j.trd.2018.09.020. DOI: https://doi.org/10.1016/j.trd.2018.09.020
Fiori, C.; M. Montanino; S. Nielsen et al. (2021) Microscopic energy consumption modelling of electric buses: model development, calibration, and validation. Transportation Research Part D, Transport and Environment, v. 98, p. 102978. DOI: 10.1016/j.trd.2021.102978. DOI: https://doi.org/10.1016/j.trd.2021.102978
George, D. and P. Sivraj (2021, August) Driving range estimation of electric vehicles using deep learning. In 2021 second international conference on electronics and sustainable communication systems (Coimbatore, India). New York: IEEE, p. 358–365. DOI: 10.1109/ICESC51422.2021.9532912. DOI: https://doi.org/10.1109/ICESC51422.2021.9532912
Genikomsakis, K.N. and G. Mitrentsis (2017) A computationally efficient simulation model for estimating energy consumption of electric vehicles in the context of route planning applications. Transportation Research Part D, Transport and Environment, v. 50, p. 98-118. DOI: 10.1016/j.trd.2016.10.014. DOI: https://doi.org/10.1016/j.trd.2016.10.014
Ivanov, D.; A. Tsipoulanidis and J. Schönberger (2021) Global Supply Chain and Operations Management. Cham: Springer International Publishing. DOI: 10.1007/978-3-030-72331-6. DOI: https://doi.org/10.1007/978-3-030-72331-6_1
Kin, B.; M. Hopman and H. Quak (2021) Different charging strategies for electric vehicle fleets in urban freight transport. Sustainability, v. 13, n. 23, p. 13080. DOI: 10.3390/su132313080. DOI: https://doi.org/10.3390/su132313080
Kocaarslan, I.; M.A. Zehir; E. Uzun et al. (2022, June) High-fidelity electric vehicle energy consumption modelling and investigation of factors in driving on energy consumption. In 2022 4th Global Power, Energy and Communication Conference (Nevsehir, Turkey). New York: IEEE, p. 227–231. DOI: 10.1109/GPECOM55404.2022.9815789. DOI: https://doi.org/10.1109/GPECOM55404.2022.9815789
Kucukoglu, I.; R. Dewil and D. Cattrysse (2021) The electric vehicle routing problem and its variations: A literature review. Computers & Industrial Engineering, v. 161, p. 107650. DOI: 10.1016/j.cie.2021.107650. DOI: https://doi.org/10.1016/j.cie.2021.107650
Li, W.; P. Stanula; P. Egede et al. (2016) Determining the main factors influencing the energy consumption of electric vehicles in the usage phase. Procedia CIRP, v. 48, p. 352-357. DOI: 10.1016/j.procir.2016.03.014. DOI: https://doi.org/10.1016/j.procir.2016.03.014
Li, J.; Z. Li; W. Zhuang et al. (2022, May) Data-driven energy consumption prediction of electric bus on a given route. In 2022 IEEE 5th International Electrical and Energy Conference (Nangjing, China). New York: IEEE, p. 1698–1703. DOI: 10.1109/CIEEC54735.2022.9846407. DOI: https://doi.org/10.1109/CIEEC54735.2022.9846407
López, F.C. and R.Á. Fernández (2020) Predictive model for energy consumption of battery electric vehicle with consideration of self-uncertainty route factors. Journal of Cleaner Production, v. 276, p. 124188. DOI: 10.1016/j.jclepro.2020.124188. DOI: https://doi.org/10.1016/j.jclepro.2020.124188
Ma, X.; R. Miao; X. Wu et al. (2021) Examining influential factors on the energy consumption of electric and diesel buses: A data-driven analysis of large-scale public transit network in Beijing. Energy, v. 216, p. 119196. DOI: 10.1016/j.energy.2020.119196. DOI: https://doi.org/10.1016/j.energy.2020.119196
Maity, A. and S. Sarkar (2023) Data-driven probabilistic energy consumption estimation for battery electric vehicles with model uncertainty. International Journal of Green Energy, v. 21, n. 9, p. 1986-2003. DOI: 10.1080/15435075.2023.2276174. DOI: https://doi.org/10.1080/15435075.2023.2276174
Modi, S.; J. Bhattacharya and P. Basak (2020) Estimation of energy consumption of electric vehicles using deep convolutional neural network to reduce driver’s range anxiety. ISA Transactions, v. 98, p. 454-70. DOI: 10.1016/j.isatra.2019.08.055. PMid:31493873. DOI: https://doi.org/10.1016/j.isatra.2019.08.055
Pamidimukkala, A.; S. Kermanshachi; J.M. Rosenberger et al. (2024) Barriers and motivators to the adoption of electric vehicles: a global review. Green Energy and Intelligent Transportation, v. 3, n. 2, p. 100153. DOI: 10.1016/j.geits.2024.100153. DOI: https://doi.org/10.1016/j.geits.2024.100153
Pang, Q.; S. Chen; Y. Ma et al. (2024) Estimating of energy consumption of electric vehicles under different road characteristics: a case study for Nanjing, China. International Journal of Green Energy, v. 21, n. 11, p. 1-16. DOI: 10.1080/15435075.2024.2319287. DOI: https://doi.org/10.1080/15435075.2024.2319287
Peña, D.; B. Dorronsoro and P. Ruiz (2024) Sustainable waste collection optimization using electric vehicles. Sustainable Cities and Society, v. 105, p. 105343. DOI: 10.1016/j.scs.2024.105343. DOI: https://doi.org/10.1016/j.scs.2024.105343
Rajper, S.Z. and J. Albrecht (2020) Prospects of electric vehicles in the developing countries: A literature review. Sustainability, v. 12, n. 5, p. 1906. DOI: 10.3390/su12051906. DOI: https://doi.org/10.3390/su12051906
Rastani, S.; T. Yüksel and B. Çatay (2019) Effects of ambient temperature on the route planning of electric freight vehicles. Transportation Research Part D, Transport and Environment, v. 74, p. 124-141. DOI: 10.1016/j.trd.2019.07.025. DOI: https://doi.org/10.1016/j.trd.2019.07.025
Ritchie, H. (2020) Cars, planes, trains: where do CO2 emissions from transport come from?. Available at: <https://ourworldindata.org/co2-emissions-from-transport> (accessed 08/29/2025).
Ruoso, A.C. and J.L.D. Ribeiro (2022) An assessment of barriers and solutions for the deployment of electric vehicles in the Brazilian market. Transport Policy, v. 127, p. 218-229. DOI: 10.1016/j.tranpol.2022.09.004. DOI: https://doi.org/10.1016/j.tranpol.2022.09.004
Snoeck, A.; A. Bhargava; D. Merchan et al. (2024). Energy estimation of last mile electric vehicle routes. arXiv Preprint. DOI: 10.48550/arXiv.2408.12006.
Tanaka, M.; T. Ida; K. Murakami et al. (2014) Consumers’ willingness to pay for alternative fuel vehicles: A comparative discrete choice analysis between the US and Japan. Transportation Research Part A, Policy and Practice, v. 70, p. 194-209. DOI: 10.1016/j.tra.2014.10.019. DOI: https://doi.org/10.1016/j.tra.2014.10.019
Ullah, I.; K. Liu; T. Yamamoto et al. (2022) Prediction of electric vehicle charging duration time using ensemble machine learning algorithm and Shapley additive explanations. International Journal of Energy Research, v. 46, n. 11, p. 15211-15230. DOI: 10.1002/er.8219. DOI: https://doi.org/10.1002/er.8219
Viola, F. (2021) Electric vehicles and psychology. Sustainability, v. 13, n. 2, p. 719. DOI: 10.3390/su13020719. DOI: https://doi.org/10.3390/su13020719
Volkswagen (2021) Volkswagen e-Delivery 14: Especificações técnicas. Available at: <https://www.vwco.com.br/caminhoes/e-Delivery/e-Delivery%2014?id=27&productid=185> (accessed 08/29/2025).
Wang, J.; I. Besselink and H. Nijmeijer (2015) Electric vehicle energy consumption modelling and prediction based on road information. World Electric Vehicle Journal, v. 7, n. 3, p. 447-458. DOI: 10.3390/wevj7030447. DOI: https://doi.org/10.3390/wevj7030447
Wang, J.; I. Besselink and H. Nijmeijer (2017a) Battery electric vehicle energy consumption modelling for range estimation. International Journal of Electric and Hybrid Vehicles, v. 9, n. 2, p. 79-102. DOI: 10.1504/IJEHV.2017.085336. DOI: https://doi.org/10.1504/IJEHV.2017.085336
Wang, J.; K. Liu and T. Yamamoto (2017b) Improving electricity consumption estimation for electric vehicles based on sparse GPS observations. Energies, v. 10, n. 1, p. 129. DOI: 10.3390/en10010129. DOI: https://doi.org/10.3390/en10010129
Wang, J.B.; K. Liu; T. Yamamoto et al. (2017c) Improving estimation accuracy for electric vehicle energy consumption considering the effects of ambient temperature. Energy Procedia, v. 105, p. 2904-2909. DOI: 10.1016/j.egypro.2017.03.655. DOI: https://doi.org/10.1016/j.egypro.2017.03.655
Xiao, Y.; Y. Zhang; I. Kaku et al. (2021) Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renewable & Sustainable Energy Reviews, v. 151, p. 111567. DOI: 10.1016/j.rser.2021.111567. DOI: https://doi.org/10.1016/j.rser.2021.111567
Xu, Y. and K. Wang (2018). Research on estimation method of mileage power consumption for electric vehicles. In 2018 International Conference on Computer Science, Electronics and Communication Engineering (Wuhan, China). Dordrecht: Atlantis Press, p. 504–508. DOI: 10.2991/csece-18.2018.110. DOI: https://doi.org/10.2991/csece-18.2018.110
Ye, F.; G. Wu; K. Boriboonsomsin et al. (2016, November) A hybrid approach to estimating electric vehicle energy consumption for ecodriving applications. In 2016 IEEE 19th International Conference on Intelligent Transportation Systems (Rio de Janeiro, RJ). New York: IEEE, p. 719–724. DOI: 10.1109/ITSC.2016.7795633. DOI: https://doi.org/10.1109/ITSC.2016.7795633
Zhang, S.; Y. Gajpal; S.S. Appadoo et al. (2018) Electric vehicle routing problem with recharging stations for minimizing energy consumption. International Journal of Production Economics, v. 203, p. 404-413. DOI: 10.1016/j.ijpe.2018.07.016. DOI: https://doi.org/10.1016/j.ijpe.2018.07.016
Zhang, J.; Y. Qian; J. Zeng et al. (2023) Hybrid characteristics of heterogeneous traffic flow mixed with electric vehicles considering the amplitude of acceleration and deceleration. Physica A, v. 614, p. 128556. DOI: 10.1016/j.physa.2023.128556. DOI: https://doi.org/10.1016/j.physa.2023.128556
Zhou, G.; X. Ou and X. Zhang (2013) Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions. Energy Policy, v. 59, p. 875-884. DOI: 10.1016/j.enpol.2013.04.057. DOI: https://doi.org/10.1016/j.enpol.2013.04.057
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Alexandre Duarte, José Pedro Gomes da Cruz, Hugo Tsugunobu Yoshida Yoshizaki

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Ao submeter um manuscrito para publicação neste periódico, todos os seus autores concordam, antecipada e irrestritamente, com os seguintes termos:
- Os autores mantém os direitos autorais e concedem à Transportes o direito de primeira publicação do manuscrito, sem nenhum ônus financeiro, e abrem mão de qualquer outra remuneração pela sua publicação pela ANPET.
- Ao ser publicado pela Transportes, o manuscrito fica automaticamente licenciado sob a Licença Creative Commons CC BY 4.0. Esta licença permite o seu compartilhamento com reconhecimento da autoria e da publicação inicial neste periódico.
- Os autores têm autorização para assumir contratos adicionais separadamente, para distribuição não exclusiva da versão do trabalho publicada neste periódico (por ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento da publicação inicial na Transportes, desde que tal contrato não implique num endosso do conteúdo do manuscrito ou do novo veículo pela ANPET.
- Os autores têm permissão e são estimulados a publicar e distribuir seu manuscrito online (por ex.: em repositórios institucionais ou na sua página pessoal) depois de concluído o processo editorial. Como a Transportes é de acesso livre, os autores são estimulados a usar links para o DOI do artigo nesses casos.
- Os autores garantem que obtiveram todas as permissões necessárias dos empregadores para a publicação e o licenciamento CC BY 4.0 do manuscrito, especialmente se o empregador possuir alguma reivindicação sobre os direitos autorais do manuscrito. Os autores assumem total responsabilidade por questões de direitos autorais relacionadas ao empregador, isentando a ANPET e a Transportes de qualquer responsabilidade relacionada.
- Os autores assumem toda responsabilidade sobre o conteúdo do manuscrito, incluindo as devidas e necessárias autorizações para divulgação de dados coletados e resultados obtidos, isentando a ANPET e a Transportes de toda e qualquer responsabilidade neste sentido.
Última atualização: 27/11/2025




