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ABSTRACT
This paper evaluates a physical model for estimating the energy consumption of Battery 
Electric Vehicles (BEVs) in urban deliveries, as well as proposing an analysis of the impact of 
speed, road profile, load weight, and number of stops on the range of these vehicles. The 
proposed microscopic physical model is based on vehicle dynamics equations, considering 
exponential battery regeneration during braking events. Physical parameters and auxiliary 
system consumption of the BEV are taken from the literature, and a standard driving cycle 
is proposed, with a speed and acceleration profile based on real-world data. A total of 160 
distinct scenarios were simulated, varying the vehicle’s maximum speed, road profile, load 
weight and number of stops. The results demonstrate that these factors have a significant 
and quantifiable effect on BEV range. Uphill road grades can reduce range by up to 63% 
compared to flat terrain, while higher speeds substantially increase energy consumption – 
range is up to 88% higher at 10 km/h and 54% lower at 80 km/h, compared to a baseline 
of 40 km/h. Load weight also plays a major role, with a range loss of up to 37% when 
comparing 1000 kg to 5000 kg loads. Frequent stops further reduce range, with up to a 
32% decrease in high stop-density scenarios. These findings highlight the importance of 
optimizing operational variables when planning BEV-based urban logistics, minimizing the 
risk of mid-route battery depletion.
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RESUMO
Este artigo avalia um modelo físico para estimar o consumo de energia de Veículos Elétricos a 
Bateria (BEVs) em entregas urbanas, bem como propõe uma análise do impacto da velocidade, 
perfil da via, peso da carga e número de paradas na autonomia desses veículos. O modelo 
físico microscópico proposto baseia-se em equações da dinâmica veicular, considerando 
regeneração exponencial de bateria durante eventos de frenagem. Os parâmetros físicos e 
o consumo dos sistemas auxiliares do BEV foram obtidos da literatura, e um ciclo de direção 
padrão é proposto, com um perfil de velocidade e aceleração baseado em dados reais. Um 
total de 160 cenários distintos foi simulado, variando velocidade máxima, perfil da via, peso 
da carga e número de paradas. Os resultados demonstram que esses fatores têm efeito 
significativo e quantificável na autonomia dos BEVs. Inclinações podem reduzir a autonomia 
em até 63% em comparação a terrenos planos, enquanto maiores velocidades aumentam 
substancialmente o consumo de energia – a autonomia é até 88% maior a 10 km/h e 54% 
menor a 80 km/h, em relação à referência de 40 km/h. O peso da carga também desempenha 
um papel importante, com perda de autonomia de até 37% comparando cargas de 1000 kg 
e 5000 kg. Paradas frequentes reduzem ainda mais a autonomia, com queda de até 32% em 
cenários de alta densidade de paradas. Esses achados destacam a importância de otimizar 
variáveis operacionais no planejamento da logística urbana com BEVs, minimizando o risco 
de esgotamento da bateria durante o trajeto.
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1. INTRODUCTION
The logistics sector plays a critical role in urban development and quality of life due to its economic 
and environmental impacts (Alarcón, Mac Cawley and Sauma, 2023). Last-mile deliveries have 
expanded with the rise of e-commerce, which has implications for the sustainability of logistics 
operations (Anosike et al., 2023). Transport costs make up roughly 6 to 8% of a company’s expenses 
(Ivanov et al., 2021), and the sector is responsible for 24% of energy-related CO2 emissions (Rastani, 
Yüksel and Çatay, 2019). Freight vehicles, despite representing only 10-15% of vehicle miles in 
cities, contribute around 33% of traffic-related greenhouse gas (GHG) emissions (Ritchie, 2020; 
Kin, Hopman and Quak, 2021).

According to Xiao et al. (2021), Electric vehicles (EVs) can lower GHG emissions to roughly 20% of 
those from fossil fuel-powered vehicles, making them a promising solution for reducing emissions 
and fossil fuel dependence in urban cargo transport (Pamidimukkala et al., 2024), thereby aiding 
in the decarbonization of the transport sector (Ruoso and Ribeiro, 2022).

A key incentive for adopting EVs is energy savings. Research shows that EVs save around 35% 
more energy over their lifecycle compared to internal combustion engine (ICE) vehicles (Zhou, Ou 
and Zhang, 2013) and reduce costs per kilometer by 60 up to 80% (Tanaka et al., 2014). Electricity 
consumption for EVs, according to Xiao et al. (2021), can be as low as 10% of the cost required by 
ICE vehicles. EVs also eliminate fossil fuel use (Rajper and Albrecht, 2020), reducing operational 
costs and particulate emissions (Ruoso and Ribeiro, 2022), known to have adverse health effects 
(Lopez and Fernandez, 2020). However, high upfront costs for EVs remain a barrier to widespread 
adoption (Pamidimukkala et al., 2024).

According to Ruoso and Ribeiro (2022), the market share of EVs remains low, particularly in 
emerging countries, with only about 10% of the global electric fleet located south of the globe. In 
Brazil, for example, EVs represented 7% of licensed vehicles in 2024 (ABVE, 2025).

EVs present various challenges across the supply chain, impacting businesses, manufacturers, 
governments, and investors (Alarcón, Mac Cawley and Sauma, 2023; Anosike et al., 2023), who must 
adapt strategies to address issues such as high acquisition costs, limited range, slow charging, lack 
of incentives, and restricted resale markets (Rastani, Yüksel and Çatay, 2019; Ruoso and Ribeiro, 
2022; Alarcón, Mac Cawley and Sauma, 2023; Anosike et al., 2023; Pamidimukkala et al., 2024). 
Psychological barriers, like range anxiety and fear of accidents, also slow adoption, as does a lack 
of infrastructure and driver training (Viola, 2021). In this sense, many drivers sacrifice comfort 
to maximize range, using only 50-70% of battery capacity to reduce operational risks (Ullah et al., 
2022; Anosike et al., 2023).

Promoting EV adoption involves demonstrating social and environmental responsibility, aligning 
with ESG goals, and emphasizing benefits like GHG reduction and fossil fuel savings (Viola, 2021; 
Pamidimukkala et al., 2024). However, public knowledge of EV performance, costs, and maintenance 
remains limited (Rajper and Albrecht, 2020), indicating a need for education and research to 
support wider adoption, particularly in markets like Brazil (Castro, Cutaia and Vaccari, 2021).

EVs powered solely by batteries are classified as BEVs and typically have a range of 100-250 km 
on a full charge (Zhang et al., 2018). In BEV routing literature, most studies assume that energy 
consumption is constant and linear per unit of distance (Kucukoglu, Dewil and Cattrysse, 2021). 
However, battery consumption on urban routes depends on more than just distance, as it is 
significantly influenced by driver behavior, which encompasses speed profiles, acceleration, and 
braking, as well as road surface conditions, traffic, distance between stops, external temperature, 
topography, load weight, component efficiency, regenerative braking, usage of auxiliary systems, 
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among others (Basso et al., 2019; Basso, Kulcsár and Sanchez-Diaz, 2021; Anosike et al., 2023; 
Pang et al., 2024; Snoeck et al., 2024). Consequently, the BEV consumption parameter (kWh/km), 
obtained by dividing battery capacity (kWh) by maximum range (km), varies considerably across 
different scenarios (Abdelaty and Mohamed, 2021), making it crucial to study the impact of each 
factor on energy consumption to minimize the risk of vehicles running out of battery during 
operation (Basso, Kulcsár and Sanchez-Diaz, 2021).

In this context, a literature review was initially conducted to identify the most significant 
factors affecting the energy consumption of electric vehicles and to map the main methods for 
estimating energy consumption in these vehicles. This review supported the primary aim of the 
paper: to evaluate a physical model based on vehicle dynamics equations to estimate the energy 
consumption of BEVs, analyzing the impact of selected factors (speed, road gradient, and stop 
frequency) on vehicle range in last-mile urban delivery operations.

The paper is structured as follows: it begins with a literature review, allowing us to identify the 
main factors impacting BEV range and the key methods for estimating their energy consumption. 
Next, based on this review, a physical model based on vehicle dynamics equations with exponential 
battery regeneration is described to estimate BEV energy consumption. The study then defines 
the driving cycles considered, as well as the parameters and variation ranges used in the range 
analyses. The proposed method shows that estimating BEV consumption based solely on distance 
traveled is subject to operational variations, and that considering additional factors is necessary 
for a more accurate and reliable range estimate, helping to prevent complete battery depletion 
during routes.

2. LITERATURE REVIEW

2.1. Parameters that affect the energy consumption of electric vehicles
Energy consumption in EVs is influenced by a variety of parameters and factors, related to both 
the vehicle’s components (mass, frontal area, engine power, drag coefficient, rolling resistance 
coefficient, battery capacity, battery temperature, state of charge and state of health of the battery) 
and its dynamics (travel time, distance between stops, average speed, acceleration, and deceleration 
rates), as well as traffic conditions, driving behavior, and road (gradient, distance traveled, and rolling 
condition) and environmental conditions (temperature, air density, wind speed, use of auxiliary 
systems) (Abdelaty and Mohamed, 2021; Basso et al., 2019; Basso, Kulcsár and Sanchez-Diaz, 2021; 
Chen et al., 2021; Fiori et al., 2021; Kocaarslan et al., 2022; Peña, Dorronsoro and Ruiz, 2024).

Abdelaty and Mohamed (2021) concluded that road grade is the variable that most impacts EV 
energy consumption, followed by road condition, driving behavior (speed and acceleration profile) 
and stop density. In the specific scenarios evaluated by the authors, the linear consumption parameter 
of the BEV (kWh/km) varies substantially, which reveals that energy consumption varies significantly 
depending on the factors mentioned above. Moreover, Cieslik and Antczak (2023) highlight the effect 
of the load carried by the BEV on its range, having a significant impact on urban routes.

In terms of driving behavior, Donkers, Yang and Viktorović (2020) developed a study where 
drivers are categorized as eco-drivers, average drivers, and aggressive drivers, with driving 
behavior (represented by speed and acceleration profile) shown to significantly impact battery 
consumption. Aggressive driving at high speeds consumes 17% more energy than economic driving, 
while at low speeds, such as in urban delivery areas, economical driving uses 5% more energy due 
to longer travel times. Speed fluctuations, however, affect aggressive drivers more substantially. 
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In a related study, Abdelaty and Mohamed (2021) classified driver aggressiveness into three levels and 
found that an increase in one level raises the EV’s macroscopic consumption rate by 0.065 kWh/km. 
The study also highlighted a non-linear relationship between energy consumption and speed, 
with minor speed changes around 35 km/h, common in urban areas, resulting in notable energy 
consumption variations.

When it comes to road grade and type, Donkers, Yang and Viktorović (2020) found that energy 
consumption on urban roads is 20% higher than on expressways. Road grade significantly impacts 
consumption, with a 1% incline at 30 km/h doubling the energy usage for that section. Additionally, 
high deceleration elements such as curves, speed bumps, and traffic lights strongly influence 
consumption, especially for aggressive driving profiles. Similarly, Abdelaty and Mohamed (2021) 
concluded that a 1% increase in average road grade raises the EV macroscopic consumption 
parameter by 0.380 kWh/km, potentially reducing the range by up to 35% in extreme cases.

Regarding the transported mass, Cieslik and Antczak (2023) studied the impact of the load 
carried on the range of light-duty electric vehicles for different types of roads. For highways, the 
impact of the transported mass is small. However, for urban roads with heavy traffic, the authors 
recorded a decrease of nearly 14% in the BEV’s range when using it fully loaded. This is due to 
the higher energy consumed in acceleration processes, especially in uphill sections.

Finally, regarding traffic conditions, congestion levels, and the number of stops, these factors 
have a significant impact on EV energy consumption (Chen et al., 2021). Fetene et al. (2017) 
incorporated a “rush hour” variable into an energy estimation model to account for periods of 
heavy congestion, while studies by Li et al. (2016) and Xu and Wang (2018) identified the number 
of stops per hour as a statistically significant factor in their models. Moreover, Ma et al. (2021) 
found in a study on electric buses that a route with a high frequency of stops can exhibit energy 
consumption approximately 30% higher than a route with low stop density.

2.2. Electric vehicle energy expenditure modeling
According to Chen et al. (2021), methods for modeling EV energy consumption can be categorized 
into rule-based (physical), data-based (statistical), and hybrid models, with Dabčević et al. (2024) 
identifying a fourth type: elementary models, which relate energy consumption to distance traveled 
using a macroscopic consumption parameter (kWh/km) similar to manufacturer-provided specifications.

Rule-based methodologies often use Newton’s laws to calculate power at the wheels, assuming 
powertrain efficiency values, as seen in several studies (Basso et al., 2019; Basso, Kulcsár and 
Sanchez-Diaz, 2021; Fiori et al., 2021; Ding et al., 2022; Kocaarslan et al., 2022; Peña, Dorronsoro 
and Ruiz, 2024). The physical models use dynamic equations, which make it possible to consider 
the effect of dynamic parameters, road profile, number of stops, among other factors, on the energy 
consumption of BEVs. On the other hand, data-based methodologies commonly use machine 
learning techniques to model relationships between response factors and energy consumption 
(Modi, Bhattacharya and Basak, 2020; Chen et al., 2021; Maity and Sarkar, 2023).

However, rule-based physical models can be generic, resulting in estimation errors, or excessively 
complex, which impair their real-time performance (Ye et al., 2016). BEV energy consumption is 
highly sensitive to internal and external factors, with small variations potentially causing drastic 
changes in consumption. Due to this variability, deterministic physical models are not always 
reliable in real-world conditions (Maity and Sarkar, 2023). Conversely, data-based models can 
suffer from limited predictability and generalization, as they are tailored to the characteristics 
of specific training datasets (e.g., vehicle properties, routes, or driver behavior). Achieving broad 
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generalization requires diverse datasets, which are difficult to obtain due to the scarcity of 
well-structured data from electric fleets (Dabčević et al., 2024). Hybrid approaches, therefore, aim 
to combine the strengths of both methodologies, reducing the prediction errors and improving 
performance (Ye et al., 2016; Ullah et al., 2022).

Table 1 presents a summary of the papers reviewed in sections 2.1 and 2.2. The following acronyms 
must be defined: Physical Model (PM), Empirical (E), Hybrid Model (HM), Data-Based Models (DBM), 
Simulation (S), Simulation and Experiments (SE), GPS Data (GPSD), Collected Data (CD), Trapezoidal 
Speed Profile (TrSP), Machine Learning (ML), Typical Speed Profiles (TySP), Exponential Battery 
Regeneration (EBR), Linear Battery Regeneration (LBR), Non-Linear Battery Regeneration (NLBR), 
Empirical Equations (EE), Constant Consumption (CC), Basic Auxiliary Systems (BAS).

Table 1: Summary table – reviewed papers

Source Model type Data used Speed profile Battery regeneration Auxiliary systems

Wang et al. (2015) PM, E S TrSP NLBR, EE -

Wang et al. (2017a) PM, E SE SE NLBR, EE CC

Wang et al. (2017b) HM GPSD GPSD - BAS

Wang et al. (2017c) HM GPSD GPSD - BAS

Cauwer et al. (2017) HM GPSD ML - -

Genikomsakis and Mitrentsis (2017) PM S TySP LBR S

Fiori and Marzano (2018) HM GPSD GPSD NLBR, EBR CC

Donkers et al. (2020) HM SE S LBR BAS

Modi et al. (2020) HM S S LBR CC

Lopez and Fernández (2020) HM S S LBR -

Chen et al. (2021) HM GPSD GPSD - -

Fiori et al. (2021) HM GPSD GPSD NLBR, EBR BAS

Basso et al. (2021) PM S, GPSD TySP, GPSD LBR CC

Abdelaty and Mohamed (2021) HM S, DC S NLBR, S BAS

Ullah et al. (2022) DBM GPSD GPSD - CC

Ding et al. (2022) PM GPSD TySP - -

Kocaarslan et al. (2022) PM S TySP LBR S

Li et al. (2022) HM GPSD GPSD - BAS

Maity and Sarkar (2023) DBM GPSD GPSD - -

Pena et al. (2024) PM GPSD GPSD NLBR, EBR CC

Dabčević et al. (2024) HM GPSD GPSD NLBR CC

Snoeck et al. (2024) DBM DC GPSD - -

In this sense, considering the exposed limitations, a physical model is selected for this study. To 
advance with a hybrid model and develop machine learning models that integrate physical estimates 
with additional predictive variables, real operational data would be required to extract factors — 
data that is difficult to obtain at scale. Therefore, this study evaluates the ability of a physical 
model to estimate BEV range under various scenarios, as will be described in the methodology 
section, since this type of model is able to capture the effect of speed, acceleration, road profile, 
load weight, number of stops, among other factors, on the energy consumption pattern of BEVs.

TRANSPORTES | ISSN: 2237-13461 5

Duarte, Cruz and Yoshizaki Volume 33 | e3067 | 2025



3. METHODOLOGY

3.1. Physical model for estimating the energy expenditure of BEVs
A microscopic physical model for point-to-point energy consumption estimation was employed 
(Peña, Dorronsoro and Ruiz, 2024). The model assumes that the total energy consumption of the 
BEV, on all segments i of a route ( 1, 2, , i n= … ), is composed of three main components: traction 
energy ( tractionE ), divided by the BEV’s overall efficiency ( globalη ); energy for the operation of 
auxiliary systems ( auxE ); and regenerative braking energy ( regenE ), multiplied by the efficiency 
of the BEV’s regenerative system ( regenη ). The total energy consumption ( totalE ) can be seen on 
Equation (1).

( )
( )

,1
,1

 

n
traction i ni

total aux Regen Regen iiglobal

E
E E Eη

η
=

=
= + −
∑ ∑  	 (1)

According to George and Sivraj (2021), auxiliary systems in BEVs can increase energy consumption 
up to 45%, depending on usage, with a 30% increase considered in this study to account for the 
continuous operation of main systems like power steering, lights, and power windows. Then, the 
total energy consumption ( totalE ), defined in Equation (1), can be rewritten in Equation (2) as 
the sum of energy required for vehicle movement across route segments ( ,traction iE ), adjusted 
by the BEV’s overall efficiency ( globalη ) and by the auxiliary consumption factor (  1 .3auxγ = ), and 
reduced by the regenerative braking energy ( regenE ) multiplied by the efficiency of the BEV’s 
regenerative system ( regenη ).

( ) ( ), ,1 1
 

n naux
total traction i Regen Regen ii iglobal

E E E
γ

η
η = =

= −∑ ∑  	 (2)

The overall efficiency of the BEV ( globalη ), in Equation (2), considers the efficiencies of the motor 
( motorη ), battery ( batη ), transmission system ( transmη ), and converters ( convη ) (Donkers, Yang and 
Viktorović, 2020). The equation for overall efficiency is described in Equation (3).

  global motor bat transm convη η η η η= × × ×  	 (3)

Battery regeneration occurs during deceleration and braking, where the EV’s kinetic energy 
is partially converted into electricity (Chen et al., 2021). To model regenerative braking, some 
studies use linear regeneration mechanisms (Donkers, Yang and Viktorović, 2020; Fiori et al., 
2021; Kocaarslan et al., 2022), while others prefer exponential models (Fiori and Marzano, 2018; 
Peña, Dorronsoro and Ruiz, 2024). While the linear model depends on the driver’s efficiency, 
which is based on literature but lacks operational validation, the exponential model is preferable 
as it relies on the EV’s speed profile during the route, making it more predictable. Therefore, 
Equation (2) can be rewritten as shown in Equation (4), considering that the energy regenerated 
through braking is modeled exponentially ( RegenExpE ). The efficiency of exponential regenerative 
braking on segment i ( ,RegenExp iη ) is given by Equation (5). It depends on the global efficiency of 
the BEV ( globalη ) and on the regenerative braking factor ( ,RegenExp if ), which is influenced by the 
vehicle’s speed in that specific segment ( iv ).
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( ) ( ), , ,1 1
  

n naux
total traction i RegenExp i RegenExp ii iglobal

E E E
γ

η
η = =

= − ×∑ ∑  	 (4)

( )
, , 1  iv t

RegenExp i RegenExp i global globalf eη η η− = × = − ×  
 	 (5)

The traction energy in segment i ( ,traction iE ) is defined in Equation (6) as the sum of positive 
kinetic energy ( ,kinetic iE+ ), positive gravitational potential energy ( ,gravit iE+ ), air drag energy 
( ,airgrad iE ), and rolling resistance energy ( ,rolling iE ) in that segment.

, , , , ,  traction i kinetic i gravit i airdrag i rolling iE E E E E+ += + + +  	 (6)

The traction force in segment i ( ,traction iF ), defined in Equation (7), is the sum of the positive 
acceleration force ( ,acc iF+ ), Equation (8), air drag force ( ,airdrag iF ), Equation (9), positive gravitational 
force ( ,gravit iF+ ), Equation (10), and rolling resistance force ( ,rolling iF ), Equation (11), in that segment. 
Here, im  is the total vehicle mass (kg) in segment i; ( )ia t  is the vehicle acceleration ( 2m / s ) in 
segment i; ( )iv t  is the vehicle speed ( m / s ) in segment i; airρ  is the air density ( 3kg / m ); adf  is 
the aerodynamic drag coefficient (dimensionless); frA  is the vehicle frontal area ( 2m ); g is the 
acceleration due to gravity ( 2m / s ); ( )rf v  is the rolling resistance coefficient (dimensionless); 
and iθ  is the road gradient in segment i.

, , , , ,  traction i acc i airdrag i gravit i rolling iF F F F F+ += + + +  	 (7)

( ),   acc i i iF m a t+ +=  	 (8)

( )2
,

1      
2airdrag i air ad fr iF f A v tρ=  	 (9)

( ),    gravit i i iF m g sin θ+ +=  	 (10)

( ) ( ),     rolling i i r iF m gcos f vθ=  	 (11)

The traction power in segment i ( ,traction iP ) is given by the sum of the forces ( ,traction iF ) multiplied 
by the EV’s speed at the end of segment i, ( )iv t , as shown in Equation (12). If ( )ia t  of the segment 
is negative, the corresponding force component associated with acceleration is not considered, 
as this component will be associated with regenerative braking.

( ) ( ), , , , ,  traction i acc i airdrag i gravit i rolling i iP F F F F v t+ += + + + ×  	 (12)
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Finally, the components kineticE , gravitE , airdragE , and rollingE  are defined by their respective powers 
multiplied by the time interval ( it∆ ) spent to traverse segment i, as shown in Equations (13), (14), (15) 
and (16), respectively. Substituting these equations into Equation (6) fully defines the ,traction iE  
component. Lastly, the exponentially regenerated energy portion on segment i ( ,RegenExp iE ) is 
simply the negative kinetic energy ( ,kinetic iE− ), as defined in Equation (17).

( ) ( )
( ) ( )

,
,

,

, 0
  

, 0

kinetic acc i i i i
kinetic i

kinetic acc i i i i

E F v t t a t
E

E F v t t a t

+ +

− −

 = × ×∆ ≥= 
 = × ×∆ <

 	 (13)

( ) ( )
( )

,
,

, 0
 

0, 0

θ

θ

+ +

−

 = × ×∆ ≥= 
 = <

gravit gravit i i i i
gravit i

gravit i

E F v t t t
E

E t
	 (14)

( ), ,  airdrag i airdrag i i iE F v t t= × ×∆  	 (15)

( ), ,  rolling i rolling i i iE F v t t= × ×∆  	 (16)

, ,  RegenExp i kinetic iE E−=  	 (17)

3.2. Driving cycle
Based on the speed profiles proposed by Basso, Kulcsár and Sanchez-Diaz (2021) and Ding et al. (2022), 
a trapezoidal speed profile is used as the base driving cycle, as shown in Figure 1.

Figure  1. Speed profile. [Adapted from Basso, Kulcsár and Sanchez-Diaz, 2021, and Ding et al., 2022].
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The driving cycle is divided in four points: the vehicle starts from rest and accelerates at a 
constant rate of 2 m/s2 (Zhang et al., 2023) until reaching the maximum speed of the road at 
point 2; The vehicle maintains this speed until reaching point 3; The vehicle begins to decelerate 
at a constant rate of 4 m/s2 (Donkers, Yang and Viktorović, 2020) until reaching rest again at 
point 4. This base driving cycle is repeated n times throughout the proposed scenarios, where n 
depends on the number of stops established in the respective scenario.

3.3. Parameters and variation ranges considered in the analysis
The BEV’s technical specifications and other relevant parameters used by the physical model 
proposed on Section 3.1 are listed in Table 2.

Table 2: Truck technical specifications and considered parameters

Attribute Value Unit Source

Curb weight (T ) 6380 kg Volkswagen (2021)

Battery capacity 105 kWh Volkswagen (2021)

Frontal area ( frA ) 4.45 m2 Volkswagen (2021)

Rolling resistance ( rf ) * - Donkers, Yang and Viktorović (2020)

Acceleration due to gravity (g) 9.81 m/s2 Fiori et al. (2021)

Drag coefficient ( adf ) 0.7 - Fiori et al. (2021)

Air density ( airρ ) 1.225 kg/m3 Fiori et al. (2021)

Motor efficiency ( motorη ) 95% - Peña, Dorronsoro and Ruiz (2024)

Battery efficiency ( batη ) 97% - Peña, Dorronsoro and Ruiz (2024)

Transmission efficiency ( transmη ) 96% - Peña, Dorronsoro and Ruiz (2024)

Converter efficiency ( convη ) 90% - Peña, Dorronsoro and Ruiz (2024)

Regenerative System Efficiency ( , )RegenExp iη ) * - Peña, Dorronsoro and Ruiz (2024)

Regenerative Braking Factor ( , )RegenExp if ) * - Peña, Dorronsoro and Ruiz (2024)

Auxiliary Systems Consumption ( )auxγ ) 1.3 - George and Sivraj (2021)
*These attributes do not have a constant value, as they depend on other parameters. Their equations were defined in Section 3.1.

The following scenarios were proposed to represent urban environments: maximum speeds ( maxv ) 
of 10, 20, 30, 40, 50, 60, 70, and 80 km/h, covering typical speeds observed on expressways, arterial 
roads, collector roads, and local streets; constant road grades (θ ) of -3%, -1.5%, 0%, 1.5%, and 3%; 
load weight of 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500 and 5000 kg; and Distances Between 
Stops (DBS) of 500 m, 1000 m, 2000 m, and no stops (i.e., the vehicle travels at a constant free flow).

The analysis was divided into two parts. First, the mass carried by the BEV is considered constant 
throughout the entire operation cycle. For this constant mass, which corresponds to 40% of the 
vehicle’s total net weight, we combined the different parameters described, resulting in 160 distinct 
scenarios to assess the BEV’s range. The second analysis aims to explore the impact of the transported 
mass on the BEV’s range. To conduct this analysis, typical speed limit ranges were selected: fast traffic 
(80 km/h), arterial roads (60 km/h), collector roads (40 km/h), and local roads (30 km/h). For each 
speed limit range, a range surface (km) is generated, relating to the load carried (kg) and the road 
incline (%). The analyses were divided into two sets to allow for three-dimensional visualization, 
as this paper explores the impact of four different variables on the range of BEVs.
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For conducting the parametric analyses and obtaining the results, Python (v. 3.12) was used along 
with the libraries Pandas (v. 2.2.2), NumPy (v. 1.26.4), and Matplotlib (v. 3.8.4). A methodological 
flowchart is presented in Figure 2, outlining the step-by-step process followed to obtain the results 
presented in Section 4.

Figure 2. Methodological flowchart.

4. RESULTS

Based on the energy model proposed in Section 3.1, the driving cycle outlined in Section 3.2, and 
the scenarios described in Section 3.3, two analyses were conducted.

First, Table 3 presents the range in kilometers (km) for each scenario of maximum speed (km/h), 
road grade (%), and distance between stops (DBS, in meters). This scenario considers a load of 
2500 kg, which represents 40% of the BEV’s net weight.

Table 3: Range of the BEV (km) for each proposed scenario; the vehicle payload is constant

DBS (m)

Road grade (%)

No stops 2000 m 1000 m 500 m

Speed (km/h) -3 -1.5 0 1.5 3 -3 -1.5 0 1.5 3 -3 -1.5 0 1.5 3 -3 -1.5 0 1.5 3

10 248 248 248 76 45 239 239 239 76 45 231 230 230 75 45 216 215 215 73 44

20 227 227 227 75 45 200 200 200 71 44 178 178 178 68 42 146 146 146 63 40

30 204 203 203 72 44 160 159 159 65 41 131 131 131 60 39 96 96 96 51 35

40 180 180 180 69 42 126 125 125 59 38 96 96 96 51 35 65 65 65 41 30

50 158 158 158 65 41 99 99 99 52 35 72 72 72 43 31 46 46 46 32 25

60 138 138 138 61 39 79 79 79 46 32 55 55 55 36 27 34 34 34 26 21

70 120 120 120 57 38 64 64 64 40 29 43 43 43 31 24 26 26 26 21 17

80 105 105 105 53 36 52 52 52 35 27 34 34 34 26 21 20 20 20 17 14
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Next, Figure 3 presents the range surfaces (km) for different speed limits (km/h), considering the 
variation in road grade (%) and transported load (kg). It is important to note that these scenarios 
assume a flat road surface and no stops on the driving cycle.

Figure 3. Range surfaces (km) for A) 30 km/h; B) 40 km/h; C) 60 km/h; and D) 80 km/h.

The reference BEV used in this study, according to the vehicle’s user manual (Volkswagen, 2021) 
provided by the manufacturer, has a range of 110 km. It is assumed that the test scenario used 
by the BEV manufacturer consists of a flat terrain with no stops and an empty vehicle (i.e., the 
total mass equals the curb weight). This assumption is made as the specific test conditions for the 
manufacturer’s range estimates are not publicly disclosed. It is important to note that the results 
in Table 3 consider the total mass of the BEV as the sum of the curb weight and a load of 2500 kg, 
resulting in an approximate 40% increase in mass compared to the empty vehicle.

Analyzing Table 3, it is observed that for all speed ranges and stop intervals, the BEV’s range 
remains approximately constant across downhill scenarios as well as on flat terrain. This behavior 
is expected because the energy expenditure was estimated using vehicle dynamics equations, and 
in downhill segments, the BEV does not consume battery power for the gravitational potential 
energy component. Furthermore, given that acceleration and deceleration rates are constant, and 
the speed profile is trapezoidal, the vehicle does not utilize the downhill slope to reduce acceleration 
rates, which could otherwise decrease battery usage for the kinetic energy component.
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For uphill segments, however, as shown in Table 3, the BEV’s range is significantly impacted 
across all speed profiles. For a constant grade of 1.5%, the BEV’s range is, on average, 48% lower 
compared to the baseline flat terrain scenario. At a constant grade of 3%, the range decreases 
even further, with an average reduction of 63%. It is worth noting that the reduction in range is 
not linear with varying speed ranges, being more pronounced at lower speeds. This is due to the 
characteristics of the physical estimation model, where scenarios with lower speeds have longer 
time horizons and therefore higher power consumption for the gravitational potential energy 
component, which dominates in uphill cases.

Moreover, using the 40 km/h speed range as a reference to analyze the impact of speed on 
range, it is noted that for adjacent speed ranges of 30 km/h and 50 km/h, the variation in range 
is less significant (an increase of 24% and a decrease of 18%, respectively). For lower speed 
ranges, such as 10 km/h and 20 km/h, there is a substantial increase in range (88% and 54%, 
respectively). Conversely, for higher speed ranges, such as 70 km/h and 80 km/h, the reduction 
in range is considerable (-42% and -54%, respectively). Again, the impact of maximum speed on 
range is not linear, being more pronounced at lower speeds, resulting in significantly higher range 
for low-speed segments.

In addition, for the proposed physical model, more frequent stops generate additional acceleration 
moments, increasing battery consumption for the kinetic energy component. This is evident in 
Table 3 across all speed ranges, with the reduction in range becoming more pronounced at higher 
speeds. In a baseline scenario with no stops, lower speeds (10 to 40 km/h) exhibit an average 
range reduction of 13% for stops every 2000 m, 21% for stops every 1000 m, and 32% for stops 
every 500 m. On the other hand, higher speeds (50 to 80 km/h) show an average range reduction 
of 36% for stops every 2000 m, 52% for stops every 1000 m, and 68% for stops every 500 m.

Now, analyzing the range surfaces in Figure  3, it is clear that the transported mass has a 
significant impact on the range of BEVs. For the local road speed range (Figure 3A, 30 km/h), for 
both downhill and flat scenarios, the ranges fall between 157 and 239 km, being up to about 52% 
greater when comparing the case where the BEV is loaded with 5000 kg to the case where the 
BEV is loaded with 1000 kg. The behavior is similar for the other speed ranges. For the maximum 
speed of collector roads (Figure 3B, 40 km/h), the range falls between 142 and 209 km. For the 
maximum speed of arterial roads (Figure 3C, 60 km/h), the range falls between 112 and 155 km. 
Finally, for the maximum speed of fast roads (Figure 3D, 80 km/h), the range falls between 88 and 
116 km. The greatest disparity between ranges is found in the lower speed ranges, which can be 
explained by the increased time required to move a larger load, resulting in more power needed, 
as estimated by the physical model.

For 3% uphill scenarios, for the local road speed range (Figure 3A, 30 km/h), the ranges fall 
between 33 and 52 km, which are up to about 58% greater when comparing the case where the BEV 
is loaded with 5000 kg to the case where the BEV is loaded with 1000 kg. For the maximum speed 
of collector roads (Figure 3B, 40 km/h), the range falls between 32 and 51 km. For the maximum 
speed of arterial roads (Figure 3C, 60 km/h), the range falls between 30 and 47 km. Finally, for 
the maximum speed of fast roads (Figure 3D, 80 km/h), the range falls between 28 and 42 km. 
The greatest disparity between ranges, again, is found in the lower speed ranges. In the uphill 
scenario, however, the significant impact of the transported load on the BEV’s range is highlighted, 
explained by the fact that mass directly affects the kinetic energy, gravitational potential, and 
friction with the road surface. When comparing the most extreme case (maximum incline with 
the highest speed) with the mildest case (downhill and lower speed), the range, for an average 
load within the considered range, can be up to 82% lower, from 198 km to 35 km.
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5. CONCLUSIONS
Electric vehicles, while presenting a significant opportunity for decarbonizing last-mile logistics 
operations, face several challenges, principally the uncertainty surrounding their range. In practice, 
logistics operators often rely on macroscopic consumption parameters (kWh/km) as a reference for 
routing, typically provided by the manufacturer as a maximum range with a full battery. However, 
the literature demonstrates that energy consumption by BEVs varies significantly depending 
on several factors, including driving behavior (speeds, accelerations, and braking), road surface 
conditions, traffic, stop spacing, ambient temperature, topography, payload, vehicle component 
efficiency, and the use of auxiliary systems. Therefore, it is essential to better understand the 
impact of these factors on BEV consumption to optimize logistics operations, maximizing their 
range while minimizing the risk of battery depletion mid-route.

In this context, this study provided a literature review to identify the key factors influencing EV 
energy consumption and to map the main methodologies used in the literature to estimate energy 
consumption for these vehicles. Building on this theoretical foundation, the study proposed a 
physical model based on vehicle dynamics equations to estimate the energy consumption of BEVs. 
The impact of speed variation, road grade, load weight and number of stops on vehicle range in 
urban delivery operations was analyzed. The results show that range, measured in kilometers, 
varies significantly with changes in the parameters under study.

The impact of downhill grades on range is negligible; however, uphill grades substantially 
reduce BEV range compared to flat terrain, with up to a 63% range loss for a constant 3% incline. 
Similarly, speed strongly influences energy consumption. For a baseline speed of 40 km/h, range 
can be up to 88% greater when speed is reduced to 10 km/h or 54% lower when increased to 
80 km/h. Moreover, the transported mass significantly impacts energy consumption, resulting 
in a range loss of up to 37% (comparing a load of 1000 kg and 5000 kg for the most unfavorable 
scenario of maximum incline and low speeds). Finally, stop frequency also significantly impacts 
range, especially in high-frequency stop scenarios typical of urban environments, with up to a 
32% reduction in range for stops every 500 meters compared to a no-stop scenario.

The quantitative results obtained indicate that the impacts on vehicle range resulting from 
variations in individual parameters are consistent with values reported in the literature, despite 
differences in the methodologies employed for range estimation. In this study, rather than relying 
on commercial simulation software, a simulation was developed based on a microscopic physical 
consumption model grounded in rigid body dynamics equations. This modeling approach allows 
for parametric analysis by systematically varying both the model’s input parameters and the 
operating conditions.

The results are limited by the consideration of constant road grades in the scenarios. Therefore, 
future work should explore mixed topography profiles in the scenarios and evaluate the impact of 
varying the vehicle’s payload along the route. Furthermore, future research could also assess the 
impact of the various other parameters mentioned in the literature review, conducting isolated 
or combined analyses of these factors.
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